很多时候,你知道吗由于SQL逻辑复杂,关于加之对SQL执行逻辑理解不透彻,误区很容易产生一些莫名其妙的你知道吗结果,这些结果看似不符合预期,关于殊不知这就是误区真实结果。本文整理了几个常见的你知道吗SQL问题,我们在实际书写SQL脚本时,关于需要多加注意,误区希望本文对你有所帮助。你知道吗 外连接是关于我们书写SQL时经常使用的多表连接方式,使用起来也是误区十分的简单。值得注意的你知道吗是,越是关于简单的东西,越是误区容易被忽略细节。通常我们都是这样理解LEFT JOIN的: 语义是满足Join on条件的直接返回,但不满足情况下,需要返回Left Outer Join的网站模板left 表所有列,同时右表的列全部填null 上述对于LEFT JOIN的理解是没有任何问题的,但是里面有一个误区:谓词下推。具体看下面的实例: 假设有如下的三张表: --建表 create table t1(id int, value int) partitioned by (ds string); create table t2(id int, value int) partitioned by (ds string); create table t3(c1 int, c2 int, c3 int); --数据装载,t1表 insert overwrite table t1 partition(ds=20220120) select 1,2022; insert overwrite table t1 partition(ds=20220121) select 2,2022; insert overwrite table t1 partition(ds=20220122) select 2,2022; --数据装载,t2表 当我们执行如下的SQL查询时,会返回什么数据呢? SELECT FROM t1 LEFT JOIN t2 ON t1.id = t2.id AND t1.ds = 20220120 结果1: 结果2: 1 2022 20220120 1 120 20220120 2 2022 20220121 NULL NULL NULL 相信对于很多初学者,甚至是一个有开发经验的人来说,会认为结果1是正确的返回结果。其实结果1的并不是正确的结果,真正的返回值是结果2. 是不是跟预期的结果不一致呢?很多初学者会认为上述查询SQL中AND t1.ds = 20220120会进行谓词下推,从而得到结果2。其实,云服务器SQL本身的语义不是这样的,如果需要获取结果1的数据,正确的查询方式是下面这样: --方式1: SELECT FROM t1 LEFT OUTER JOIN t2 ON t1.id = t2.id WHERE t1.ds = 20220120 ; --方式2: SELECT FROM ( SELECT FROM t1 WHERE ds = 20220120 ) t1 LEFT OUTER JOIN t2 ON t1.id = t2.id 细心的你看出差异了吗?重点是在WHERE t1.ds = 20220120过滤条件上,最上面的查询方式是ON t1.ds = 20220120,所以按照LEFT JOIN的语义,如果没有过滤条件,那么左表的数据应该全部返回,右表匹配不上则补null。 我们先来看看没有谓词下推的查询SQL的执行计划 查看执行计划 EXPLAIN SELECT FROM t1 LEFT JOIN t2 ON t1.id = t2.id AND t1.ds = 20220120 执行计划结果 hive> EXPLAIN > SELECT > FROM t1 > LEFT JOIN t2 > ON t1.id = t2.id > AND t1.ds = 20220120 > ; OK STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3 STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_1:t2 Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_1:t2 TableScan alias: t2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator filter predicates: 0 { (_col2 = 20220120)} 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: t1 Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Left Outer Join0 to 1 filter predicates: 0 { (_col2 = 20220120)} 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: 从上面的执行计划可以看出:总共有3个stage, 其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。 stage3是map任务读取t1表数据并执行map端join。t1表数量为3行,可见并没有进行过滤操作。亿华云计算 Map Operator Tree: TableScan alias: t1 Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Stage-0进行结果输出,最终并未执行过滤操作。 查看执行计划EXPLAIN SELECT FROM t1 LEFT OUTER JOIN t2 ON t1.id = t2.id WHERE t1.ds = 20220120 执行计划结果 STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3 STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_1:t2 Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_1:t2 TableScan alias: t2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int) Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: t1 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Left Outer Join0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1, _col3, _col4, _col5 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int), _col1 (type: int), 20220120 (type: string), _col3 (type: int), _col4 (type: int), _col5 (type: string) outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: 从上面的执行计划可以看出:总共有3个stage, 其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。 TableScan alias: t2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE stage3是map任务读取t1表数据并执行map端join。t1表数量为1行,执行了过滤操作。 TableScan alias: t1 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), value (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Left Outer Join0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1, _col3, _col4, _col5 Stage-0进行结果输出,最终并未执行过操作。 总结本文主要结合具体的使用示例,对HiveSQL的LEFT JOIN操作进行了详细解释。主要包括两种比较常见的LEFT JOIN方式,一种是正常的LEFT JOIN,也就是只包含ON条件,这种情况没有过滤操作,即左表的数据会全部返回。另一种方式是有谓词下推,即关联的时候使用了WHERE条件,这个时候会会对数据进行过滤。所以在写SQL的时候,尤其需要注意这些细节问题,以免出现意想不到的错误结果。写在前面
关于LEFT JOIN
执行计划
正常LEFT JOIN
谓词下推的LEFT JOIN