当前位置:首页 > 热点

关于 HiveSQL 常见的 Left Join 误区,你知道吗

写在前面

很多时候,你知道吗由于SQL逻辑复杂,关于加之对SQL执行逻辑理解不透彻,误区很容易产生一些莫名其妙的你知道吗结果,这些结果看似不符合预期,关于殊不知这就是误区真实结果。本文整理了几个常见的你知道吗SQL问题,我们在实际书写SQL脚本时,关于需要多加注意,误区希望本文对你有所帮助。你知道吗

关于LEFT JOIN

外连接是关于我们书写SQL时经常使用的多表连接方式,使用起来也是误区十分的简单。值得注意的你知道吗是,越是关于简单的东西,越是误区容易被忽略细节。通常我们都是这样理解LEFT JOIN的:

语义是满足Join on条件的直接返回,但不满足情况下,需要返回Left Outer Join的网站模板left 表所有列,同时右表的列全部填null

上述对于LEFT JOIN的理解是没有任何问题的,但是里面有一个误区:谓词下推。具体看下面的实例:

假设有如下的三张表:

--建表

create table t1(id int, value int) partitioned by (ds string);

create table t2(id int, value int) partitioned by (ds string);

create table t3(c1 int, c2 int, c3 int);

--数据装载,t1表

insert overwrite table t1 partition(ds=20220120) select 1,2022;

insert overwrite table t1 partition(ds=20220121) select 2,2022;

insert overwrite table t1 partition(ds=20220122) select 2,2022;

--数据装载,t2表

insert overwrite table t2 partition(ds=20220120) select 1,120;

当我们执行如下的SQL查询时,会返回什么数据呢?

SELECT

*

FROM t1

LEFT JOIN t2

ON t1.id = t2.id

AND t1.ds = 20220120

;

结果1:

1 2022 20220120 1 120 20220120

结果2:

1 2022 20220120 1 120 20220120

2 2022 20220121 NULL NULL NULL

1 2022 20220122 NULL NULL NULL

相信对于很多初学者,甚至是一个有开发经验的人来说,会认为结果1是正确的返回结果。其实结果1的并不是正确的结果,真正的返回值是结果2.

是不是跟预期的结果不一致呢?很多初学者会认为上述查询SQL中AND t1.ds = 20220120会进行谓词下推,从而得到结果2。其实,云服务器SQL本身的语义不是这样的,如果需要获取结果1的数据,正确的查询方式是下面这样:

--方式1:

SELECT

*

FROM t1

LEFT OUTER JOIN t2

ON t1.id = t2.id

WHERE t1.ds = 20220120

;

--方式2:

SELECT

*

FROM (

SELECT

*

FROM t1

WHERE ds = 20220120

) t1

LEFT OUTER JOIN t2

ON t1.id = t2.id

;

细心的你看出差异了吗?重点是在WHERE t1.ds = 20220120过滤条件上,最上面的查询方式是ON t1.ds = 20220120,所以按照LEFT JOIN的语义,如果没有过滤条件,那么左表的数据应该全部返回,右表匹配不上则补null。

执行计划

我们先来看看没有谓词下推的查询SQL的执行计划

正常LEFT JOIN

查看执行计划

EXPLAIN

SELECT

*

FROM t1

LEFT JOIN t2

ON t1.id = t2.id

AND t1.ds = 20220120

;

执行计划结果

hive> EXPLAIN

> SELECT

*

> FROM t1

> LEFT JOIN t2

> ON t1.id = t2.id

> AND t1.ds = 20220120

> ;

OK

STAGE DEPENDENCIES:

Stage-4 is a root stage

Stage-3 depends on stages: Stage-4

Stage-0 depends on stages: Stage-3

STAGE PLANS:

Stage: Stage-4

Map Reduce Local Work

Alias -> Map Local Tables:

$hdt$_1:t2

Fetch Operator

limit: -1

Alias -> Map Local Operator Tree:

$hdt$_1:t2

TableScan

alias: t2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int), ds (type: string)

outputColumnNames: _col0, _col1, _col2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

HashTable Sink Operator

filter predicates:

0 { (_col2 = 20220120)}

1

keys:

0 _col0 (type: int)

1 _col0 (type: int)

Stage: Stage-3

Map Reduce

Map Operator Tree:

TableScan

alias: t1

Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int), ds (type: string)

outputColumnNames: _col0, _col1, _col2

Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE

Map Join Operator

condition map:

Left Outer Join0 to 1

filter predicates:

0 { (_col2 = 20220120)}

1

keys:

0 _col0 (type: int)

1 _col0 (type: int)

outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5

Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE

File Output Operator

compressed: false

Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE

table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

Local Work:

Map Reduce Local Work

Stage: Stage-0

Fetch Operator

limit: -1

Processor Tree:

ListSink

从上面的执行计划可以看出:总共有3个stage,

STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3

其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。

Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator

stage3是map任务读取t1表数据并执行map端join。t1表数量为3行,可见并没有进行过滤操作。亿华云计算

Map Operator Tree:

TableScan

alias: t1

Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int), ds (type: string)

outputColumnNames: _col0, _col1, _col2

Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE

Stage-0进行结果输出,最终并未执行过滤操作。

Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink

谓词下推的LEFT JOIN

查看执行计划EXPLAIN

SELECT

*

FROM t1

LEFT OUTER JOIN t2

ON t1.id = t2.id

WHERE t1.ds = 20220120

;

执行计划结果

STAGE DEPENDENCIES:

Stage-4 is a root stage

Stage-3 depends on stages: Stage-4

Stage-0 depends on stages: Stage-3

STAGE PLANS:

Stage: Stage-4

Map Reduce Local Work

Alias -> Map Local Tables:

$hdt$_1:t2

Fetch Operator

limit: -1

Alias -> Map Local Operator Tree:

$hdt$_1:t2

TableScan

alias: t2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int), ds (type: string)

outputColumnNames: _col0, _col1, _col2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

HashTable Sink Operator

keys:

0 _col0 (type: int)

1 _col0 (type: int)

Stage: Stage-3

Map Reduce

Map Operator Tree:

TableScan

alias: t1

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int)

outputColumnNames: _col0, _col1

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Map Join Operator

condition map:

Left Outer Join0 to 1

keys:

0 _col0 (type: int)

1 _col0 (type: int)

outputColumnNames: _col0, _col1, _col3, _col4, _col5

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: _col0 (type: int), _col1 (type: int), 20220120 (type: string), _col3 (type: int), _col4 (type: int), _col5 (type: string)

outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

File Output Operator

compressed: false

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

Local Work:

Map Reduce Local Work

Stage: Stage-0

Fetch Operator

limit: -1

Processor Tree:

ListSink

从上面的执行计划可以看出:总共有3个stage,

STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3

其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。

TableScan

alias: t2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int), ds (type: string)

outputColumnNames: _col0, _col1, _col2

Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE

HashTable Sink Operator

stage3是map任务读取t1表数据并执行map端join。t1表数量为1行,执行了过滤操作。

TableScan

alias: t1

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Select Operator

expressions: id (type: int), value (type: int)

outputColumnNames: _col0, _col1

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Map Join Operator

condition map:

Left Outer Join0 to 1

keys:

0 _col0 (type: int)

1 _col0 (type: int)

outputColumnNames: _col0, _col1, _col3, _col4, _col5

Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE

Stage-0进行结果输出,最终并未执行过操作。

Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink

总结本文主要结合具体的使用示例,对HiveSQL的LEFT JOIN操作进行了详细解释。主要包括两种比较常见的LEFT JOIN方式,一种是正常的LEFT JOIN,也就是只包含ON条件,这种情况没有过滤操作,即左表的数据会全部返回。另一种方式是有谓词下推,即关联的时候使用了WHERE条件,这个时候会会对数据进行过滤。所以在写SQL的时候,尤其需要注意这些细节问题,以免出现意想不到的错误结果。

分享到:

滇ICP备2023006006号-16