当前位置:首页 > 数据库

Zookeeper系列—Zookeeper应用及常用命令

第1章 常用命令

zk的列Z令应用主要是针对三类:

java原生zk客户端的API操作(不用去学这部分内容,会增加太多的应用用命学习成本,了解一下就好了)。及常zkClient的列Z令使用,它是应用用命对Zookeeper原生API的封装。Apache Curator,及常也是列Z令对Zookeeper API 的封装(本文讲的应用针对这部分内容)。

在学Java API之前,应用用命我们先来了解一下zookeeper的及常常用命令。

连接zookeeper server。列Z令

[root@jt2 bin]# sh zkCli.sh -server 127.0.0.1:2181

获取帮助help。应用用命

连接远程节点。及常

connect 192.168.8.75:2181

关闭连接。列Z令

close

显示集群。应用用命

[zk: localhost:2181(CONNECTED) 0] config

server.0=jt2:2888:3888:participant

server.1=jt3:2888:3888:participant

server.2=jt4:2888:3888:participant

version=0

创建一个znode。及常

命令语法:create [-s] [-e] [-c] [-t ttl] path [data] [acl]

-s:创建的是带序列号的节点,序列号用0填充节点路径。

-e:创建的是临时节点。高防服务器

-c:创建的是容器节点

path:znode的路径,ZooKeeper中没有相对路径,所有路径都必须以’/开头。

data:znode携带的数据。

acl:这个节点的ACL。

#创建一个永久节点

[zk: localhost:2181(CONNECTED) 2] create /zkBase

Created /zkBase

#创建一个临时节点

[zk: localhost:2181(CONNECTED) 3] create -e /ephemeral_node

Created /ephemeral_node

删除znode节点。

#删除节点前要求节点目录为空,不存在子节点

[zk: localhost:2181(CONNECTED) 34] delete /config

Node not empty: /config

[zk: localhost:2181(CONNECTED) 35] delete /config/topics/test

[zk: localhost:2181(CONNECTED) 27] delete /ephemeral_node

#如果要删除整个节点及子节点可以使用deleteall

[zk: 192.168.0.143:2181(CONNECTED) 36] deleteall /config

显示一个节点的状态。

[zk: localhost:2181(CONNECTED) 11] stat /test

cZxid = 0x180000000e

ctime = Thu Jul 28 03:25:08 CST 2022

mZxid = 0x180000000e

mtime = Thu Jul 28 03:25:08 CST 2022

pZxid = 0x180000000e

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 0

numChildren = 0

查看路径子节点。

命令语法:ls [-s] [-w] [-R] path。

-s 同时显示stat信息。-w 只显示子节点信息,默认选项。-R 递归显示。

获取指定路径下的数据。

[zk: localhost:2181(CONNECTED) 16] get /zookeeper/config

server.0=jt2:2888:3888:participant

server.1=jt3:2888:3888:participant

server.2=jt4:2888:3888:participant

version=0

设置或者更新路径数据。

[zk: localhost:2181(CONNECTED) 19] set /test/hehe "haha"

[zk: localhost:2181(CONNECTED) 20] get /test/hehe

haha

设置ACL。

ACL权限

ACL 简写

允许的操作

CREATE

c

创建子节点

READ

r

获取节点的数据和它的子节点

WRITE

w

设置节点的数据

DELETE

d

删除子节点 (仅下一级节点)

ADMIN

a

设置 ACL 权限

ZooKeeper内置了一些权限控制方案,可以用以下方案为每个节点设置权限:

方案

描述

world

只有一个用户:anyone,代表所有人(默认)

ip

使用IP地址认证

auth

使用已添加认证的用户认证

digest

使用“用户名:密码”方式认证

[zk: localhost:2181(CONNECTED) 21] getAcl /test

world,anyone

: cdrwa

[zk: localhost:2181(CONNECTED) 22] create /mynode1 hello

Created /mynode1

[zk: localhost:2181(CONNECTED) 23] addauth digest admin:admin

[zk: localhost:2181(CONNECTED) 24] setAcl /mynode1 auth:admin:cdrwa

[zk: localhost:2181(CONNECTED) 25] getAcl /mynode1

digest,admin:x1nq8J5GOJVPY6zgzhtTtA9izLc=

: cdrwa

同步数据集群间数据。

[zk: localhost:2181(CONNECTED) 26] sync /

Sync is OK

查看命令执行历史。源码下载

[zk: localhost:2181(CONNECTED) 27] history

17 - help

18 - getAllChildrenNumber /zookeeper

19 - set /test/hehe "haha"

20 - get /test/hehe

21 - getAcl /test

22 - create /mynode1 hello

23 - addauth digest admin:admin

24 - setAcl /mynode1 auth:admin:cdrwa

25 - getAcl /mynode1

26 - sync /

27 - history

退出客户端。

[zk: localhost:2181(CONNECTED) 28] quit

WATCHER::

WatchedEvent state:Closed type:None path:null

2022-07-28 03:33:49,307 [myid:] - INFO [main:ZooKeeper@1422] - Session: 0xcebb0001 closed

2022-07-28 03:33:49,308 [myid:] - INFO [main-EventThread:ClientCnxn$EventThread@524] - EventThread shut down for session: 0xcebb0001

第2章 Java API使用

zookeeper客户端和服务器会话的建立是一个异步的过程,也就是说在程序中,程序方法在处理完客户端初始化后立即返回(即程序继续往下执行代码,这样,在大多数情况下并没有真正的构建好一个可用会话,在会话的生命周期处于“CONNECTED”时才算真正的建立完毕,所以需要使用到多线程中的一个工具类CountDownLatch)。

1、创建会话

(一共有4个构造方法,根据参数不同)。

Zookeeper(String connectString,int sessionTimeout,Watcher watcher)

Zookeeper(String connectString,int sessionTimeout,Watcher watcher,boolean canBeReadOnly)

Zookeeper(String connectString,int sessionTimeout,Watcher watcher,long sessionId,byte[] sessionPasswd)

Zookeeper(String connectString,int sessionTimeout,Watcher watcher,long sessionId,byte[] sessionPasswd,boolean canBeReadOnly)

参数说明:

connectString :host:port指定的服务器列表,多个host:port之间用英文逗号分隔。还可以可选择地指定一个基路径,如果指定了一个基路径,则所有后续操作基于这个及路径进行。sessionTimeOut:会话超时时间。以毫秒为单位。客户端和服务器端之间的连接通过心跳包进行维系,如果心跳包超过这个指定时间则认为会话超时失效。watcher:指定默认观察者。如果为null表示不需要观察者。canBeReadOnly :是服务器租用否支持只读服务。只当一个服务器失去过半连接后不能再进行写入操作时,是否继续支持读取操作。sessionId、SessionPassword:会话编号 会话密码(通过两个确定唯一一台客户端),用来实现会话恢复(重复回话)。

注意,整个创建会话的过程是异步的,构造方法会在初始化连接后即返回,并不代表真正建立好了一个会话,此时会话处于"CONNECTING"状态。当会话真正创建起来后,服务器会发送事件通知给客户端,只有客户端获取到这个通知后,会话才真正建立。

代码演示:public class ZkConnect implements Watcher {

private static final Logger log = LoggerFactory.getLogger(ZkConnect.class);

//public static final String zkServerPath = "192.168.8.74:2181,192.168.8.75:2181,192.168.8.76:2181";

public static final String zkServerPath = "127.0.0.1:2181";

public static final Integer timeout = 5000;

public static CountDownLatch countDownLatch = new CountDownLatch(1);

/

**

* 客户端与zkServer连接是一个异步的过程,当连接成功后,客户端会收到一个watch通知

* 参数:

* connectString: 连接服务器的ip字符串

* sessionTimeout: 超时时间,心跳收不到了,就超时

* watcher: 通知事件,如果有对应的事件触发,则会收到一个通知;如果不需要,就设置为null

* canBeReadOnly: 可读,当这个物理机节点断开后,还是可以读到数据的,只是不能写;此时数据被读取到的可能

* 是旧数据,此处建议设置为false

* sessionId: 会话id

* sessionPasswd: 会话密码,当会话丢失后,可以依据sessionId和sessionPasswd重新获取会话

*/

public static void main(String[] args) throws Exception {

ZooKeeper zk = new ZooKeeper(zkServerPath, timeout, new ZkConnect());

log.warn("客户端开始连接zookeeper服务器。。。连接状态: { }", zk.getState());

countDownLatch.await(); // 如果不停顿一段时间, 会收不到watch通知

log.warn("连接状态: { }", zk.getState());

}

@Override

public void process(WatchedEvent event) {

log.warn("接收到watch通知: { }", event);

countDownLatch.countDown();

}

}public class ZkReconnect implements Watcher {

private static final Logger log = LogManager.getLogger(ZkReconnect.class);

public static final String zkServerPath = "127.0.0.1:2181";

public static final Integer timeout = 5000;

public static CountDownLatch countDownLatch1 = new CountDownLatch(1);

public static CountDownLatch countDownLatch2 = new CountDownLatch(2);

public static void main(String[] args) throws Exception {

ZooKeeper zk = new ZooKeeper(zkServerPath, timeout, new ZkReconnect());

long sessionId = zk.getSessionId();

byte[] sessionPasswd = zk.getSessionPasswd();

log.warn("客户端开始连接zookeeper服务器。。。连接状态: { }", zk.getState());

countDownLatch1.await(); // 如果不停顿一段时间, 会收不到watch通知

log.warn("连接状态: { }", zk.getState());

Thread.sleep(1000);

log.warn("开始会话重连...");

ZooKeeper zkSession = new ZooKeeper(zkServerPath, timeout, new ZkReconnect(), sessionId, sessionPasswd);

log.warn("重新连接, 状态: { }", zk.getState());

countDownLatch2.await();

log.warn("重新连接, 状态: { }", zk.getState());

}

@Override

public void process(WatchedEvent event) {

log.warn("接收到watch通知: { }", event);

countDownLatch1.countDown();

countDownLatch2.countDown();

}

}

2、创建节点

提供了两套创建节点的方法,同步和异步创建节点方式。

String create(final String path,byte data[],List acl,CreateMode createMode);//同步方式创建

void create(final String path,byte data[],List<ACL> acl,CreateMode createMode,StringCallback cb,Object ctx);//异步方式创建同步方式:

path:节点路径(名称):/nodeName。不允许递归创建节点,在父节点不存在的情况下,不允许创建子节点。

data[]:节点内容:要求类型是字节数组,也就是说不支持序列话方式,如果需要实现序列化,可使用java相关序列化框架,如Hessian,Kryo。

acl:节点权限:使用Ids.OPEN_ACL_UNSAFE开放权限即可。

createMode:节点类型:创建节点的类型,CreateMode.*,提供了如下所示的四种节点类型:

PERSISTENT(持久节点)。PERSISTENT_SEQUENTIAL(持久顺序节点)。EPHEMERAL(临时节点,本次会话有效)。EPHEMERAL_SEQUENTIAL(临时顺序节点,本次会话有效)。

异步方式(在同步方法参数的基础上增加两个参数):

cb:回调方法:注册一个异步回调方法,要实现。

AsynCallBack.StringCallBack接口,重写processResult(int rc, String path, Object ctx, String name)方法,当节点创建完成后执行此方法。rc:服务端响应码,0表示调用成功、-4表示端口连接、-110表示指定节点存在、-112表示会话已过期。path:接口调用时传入的数据节点的路径参数。ctx:调用接口传入的ctx值。name:实际在服务端创建的节点的名称。

ctx:传递给回调方法的参数,一般为上下文(Context)信息。

代码演示public class ZkNodeCreate implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZkNodeCreate.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZkNodeCreate() { }

public ZkNodeCreate(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZkNodeCreate());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

public static void main(String[] args) throws InterruptedException {

ZkNodeCreate zkNodeOperator = new ZkNodeCreate(zkServerPath);

zkNodeOperator.createZKNode("/testnode", "testnode".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE);

new CountDownLatch(1).await();

}

/

**

* 同步或异步创建节点,都不支持子节点的递归创建,异步有一个callback函数

* 参数:

* path: 创建的路径

* data: 存储的数据

* acl: 控制权限策略. Ids.OPEN_ACL_UNSAFE --> world:anyone:cdrwa

* Ids.CREATOR_ALL_ACL --> auth:user:password:cdrwa

* createMode: 节点类型,是一个枚举

* PERSISTENT 持久节点

* PERSISTENT_SEQUENTIAL 持久顺序节点

* EPHEMERAL 临时节点

* EPHEMERAL_SEQUENTIAL 临时顺序节点

*

* @param path

* @param data

* @param acls

*/

private void createZKNode(String path, byte[] data, ArrayList acls) {

String result = "";

try {

// 同步创建

//result = zooKeeper.create(path, data, acls, CreateMode.EPHEMERAL);

//log.warn("同步创建临时节点: { } 成功。。。", result);

// 异步创建

String ctx = "{ create:success}";

zooKeeper.create(path, data, acls, CreateMode.EPHEMERAL, new CreateNodeCallBack(), ctx);

Thread.sleep(5000);

log.warn("异步创建临时节点: { } 成功。。。", result);

} catch (Exception e) {

e.printStackTrace();

}

}

@Override

public void process(WatchedEvent event) {

log.warn("客户端连接接收到watch通知: { }", event);

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

private static class CreateNodeCallBack implements AsyncCallback.StringCallback {

@Override

public void processResult(int rc, String path, Object ctx, String name) {

log.warn("异步创建节点:{ }, ctx: { }", path, (String)ctx);

}

}

}

3、节点操作

修改节点数据。

public class ZkNodeUpdate implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZkNodeUpdate.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZkNodeUpdate() { }

public ZkNodeUpdate(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZkNodeUpdate());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

public static void main(String[] args) throws KeeperException, InterruptedException {

ZkNodeUpdate zkNodeOperator = new ZkNodeUpdate(zkServerPath);

// 创建节点

zkNodeOperator.createZKNode("/testnode", "testnode".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE);

// 修改节点数据 第三个参数是版本号dataVersion,用于乐观锁控制

Stat stat = zkNodeOperator.getZooKeeper().setData("/testnode", "修改后的数据".getBytes(), 0);

//zk.setData(path, data, version,new UpdateCallBack(),ctx);//异步修改

Thread.sleep(5000);

log.warn("修改后, dataVersion版本: { }", stat.getVersion());

new CountDownLatch(1).await();

}

private void createZKNode(String path, byte[] data, ArrayList acls) {

String result = "";

try {

// 异步创建

String ctx = "{ create:success}";

zooKeeper.create(path, data, acls, CreateMode.EPHEMERAL, new CreateNodeCallBack(), ctx);

Thread.sleep(5000);

log.warn("异步创建临时节点: { } 成功。。。", result);

} catch (Exception e) {

e.printStackTrace();

}

}

@Override

public void process(WatchedEvent event) {

log.warn("客户端连接接收到watch通知: { }", event);

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

private static class CreateNodeCallBack implements AsyncCallback.StringCallback {

@Override

public void processResult(int rc, String path, Object ctx, String name) {

log.warn("异步创建节点:{ }, ctx: { }", path, (String)ctx);

}

}

}

同步或异步删除节点数据。

public static void main(String[] args) throws KeeperException, InterruptedException {

ZkNodeDelete zkNodeOperator = new ZkNodeDelete(zkServerPath);

// 创建节点

zkNodeOperator.createZKNode("/testnode", "testnode".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE);

// 同步删除节点

//zkNodeOperator.getZooKeeper().delete("/testnode", 1); // 第二个参数 dataVersion

Thread.sleep(5000);

// 异步删除节点

String ctx = "{ delete:success}";

zkNodeOperator.getZooKeeper().delete("/testnode", 0, new AsyncCallback.VoidCallback() {

@Override

public void processResult(int rc, String path, Object ctx) {

log.warn("异步删除节点:{ }, ctx: { }", path, (String)ctx);

}

}, ctx);

new CountDownLatch(1).await();

}

节点查询。

获取节点数据。public class ZKGetNodeData implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZKGetNodeData.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZKGetNodeData() { }

public ZKGetNodeData(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZKGetNodeData());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

private static CountDownLatch countDownLatch = new CountDownLatch(1);

private static Stat stat = new Stat();

public static void main(String[] args) throws Exception {

ZKGetNodeData zkGetNodeData = new ZKGetNodeData(zkServerPath);

zkGetNodeData.getZooKeeper().create("/testnode","testnode".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);

Thread.sleep(5000);

// 第一个参数: 节点path; 第二个参数: true注册一个监听事件; 第三个参数: 获取的结果会保存在stat

byte[] result = zkGetNodeData.getZooKeeper().getData("/testnode", true, stat);

log.warn("当前值: { }", new String(result));

countDownLatch.await();

}

@Override

public void process(WatchedEvent event) {

try {

if (event.getType() == Event.EventType.NodeDataChanged) {

ZKGetNodeData zkGetNodeData = new ZKGetNodeData(zkServerPath);

byte[] result = zkGetNodeData.getZooKeeper().getData("/testnode", false, stat);

log.warn("监听到值已经更改, 更改后的值为: { }, 版本号: { }", new String(result), stat.getVersion());

countDownLatch.countDown(); // 计数器减1

} else if (event.getType() == Event.EventType.NodeCreated) {

} else if (event.getType() == Event.EventType.NodeDeleted) {

} else if (event.getType() == Event.EventType.NodeChildrenChanged) {

}

} catch (Exception e) {

e.printStackTrace();

}

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

}获取子节点列表。public class ZKGetChildrenList implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZKGetChildrenList.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZKGetChildrenList() { }

public ZKGetChildrenList(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZKGetChildrenList());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

private static CountDownLatch countDownLatch = new CountDownLatch(1);

private static Stat stat = new Stat();

public static void main(String[] args) throws Exception {

ZKGetChildrenList zkGetChildrenList = new ZKGetChildrenList(zkServerPath);

zkGetChildrenList.getZooKeeper().create("/zookeeper/bbb","bbb".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);

Thread.sleep(5000);

// 同步调用: 参数1 节点路径, 参数2 true或false, 注册一个watch事件

Listchildren = zkGetChildrenList.getZooKeeper().getChildren("/zookeeper", true);

for (String child : children) {

log.warn(child);

}

// 异步调用

// String ctx = "{ callback:ChildrenCallback}";

// zkGetChildrenList.getZooKeeper().getChildren("/testnode", true, new AsyncCallback.ChildrenCallback() {

// @Override

// public void processResult(int rc, String path, Object ctx, Listchildren) {

// log.warn("callback, path: { }, children: { }", path, children.toString());

// }

// }, ctx);

countDownLatch.await();

}

@Override

public void process(WatchedEvent event) {

try {

if (event.getType() == Event.EventType.NodeDataChanged) {

} else if (event.getType() == Event.EventType.NodeCreated) {

} else if (event.getType() == Event.EventType.NodeDeleted) {

} else if (event.getType() == Event.EventType.NodeChildrenChanged) {

ZKGetChildrenList zkGetChildrenList = new ZKGetChildrenList(zkServerPath);

Listchildren = zkGetChildrenList.getZooKeeper().getChildren("/zookeeper", false);

log.warn("监听到子节点改变, 改变后子节点数组为:");

for (String child : children) {

log.warn(child);

}

countDownLatch.countDown(); // 计数器减1

}

} catch (Exception e) {

e.printStackTrace();

}

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

}

判断节点是否存在。

public class ZKNodeExist implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZKNodeExist.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZKNodeExist() { }

public ZKNodeExist(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZKNodeExist());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

private static CountDownLatch countDownLatch = new CountDownLatch(1);

public static void main(String[] args) throws Exception {

ZKNodeExist zkNodeExist = new ZKNodeExist(zkServerPath);

Stat stat = zkNodeExist.getZooKeeper().exists("/testnode", true);

if (stat == null) {

log.warn("节点/testnode不存在");

} else {

log.warn("节点/testnode存在. stat: { }", stat);

}

countDownLatch.await();

}

@Override

public void process(WatchedEvent event) {

try {

if (event.getType() == Event.EventType.NodeDataChanged) {

} else if (event.getType() == Event.EventType.NodeCreated) {

} else if (event.getType() == Event.EventType.NodeDeleted) {

} else if (event.getType() == Event.EventType.NodeChildrenChanged) {

}

countDownLatch.countDown();

} catch (Exception e) {

e.printStackTrace();

}

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

}

4、Watcher机制及ACL

zookeeper有watch事件,是一次性触发的。当watch监视的数据发生变化时,通知在创建zookeeper是设置了Watcher的客户端。Watcher类监视的事件类型和状态类型如下所示:

事件类型(znode节点相关):

EventType.NodeCreated:节点创建。EventType.NodeDataChanged:节点数据变更。EventType.NodeChildrenChanged:子节点变更。EventType.NodeDeleted:节点删除。

状态类型(客户端实例相关):

KeeperState.Disconnected:未连接。KeeperState.SyncConnected:已连接。KeeperState.AuthFailed:认证失败。KeeperState.Expired:会话失效。

Watcher的特性:一次性、客户端串行执行、轻量。

一次性:对于ZK的Watcher,只需要记住一点:Zookeeper的watch事件是一次性触发的。当watch监视的数据发生变化时,通知设置了该watch的客户端,即watcher。由于zookeeper的监视都是一次性的,所以每次必须设置监控。客户端串行执行:客户端Watcher回调的过程是一个串行同步的过程,这为我们保证了顺序,同时需要注意一点,千万不要因为一个Watcher的处理逻辑影响了这个客户端的Watcher回调。轻量:WatchedEvent是Zookeeper整个Wacher通知机制的最小通知单元,整个数据结构只包含三部分:通知状态、事件类型和节点路径。也就是说Watcher通知非常的简单,只会告诉客户端发生了事件而不会告知其具体内容,需要客户端自己去获取,比如NodeDataChanged事件,Zookeeper只会通知客户端指定节点的数据发生了变更,而不会直接提供具体的数据内容。

ACL(Access Control List),Zookeeper作为一个分布式协调框架,其内部存储的都是一些关乎分布式系统运行时状态的元数据,尤其是涉及到一些分布式锁、Master选举和协调等应用场景。我们需要有效的保障Zookeeper中的数据安全,Zookeeper提供了一套完善的ACL权限控制机制来保障数据的安全。

Zookeeper提供了三种模式,权限模式、授权对象、权限:

权限模式:Scheme,开发人员经常使用如下四种权限模式:

IP:ip模式通过ip地址粒度来进行权限控制,例如配置了:ip:192.168.1.107,即表示权限控制都是针对这个ip地址的,同时也支持按网段分配,比如:192.168.1.*。Digest:digest是最常用的权限控制模式,也更符合对权限的认知。其类似于“username:password”形式的权限控制标识进行权限配置。Zookeeper会对形成的权限标识先后进行两次编码处理,分别是SHA-1加密算法和BASE64编码。World:World是一种最开放的权限控制模式。这种模式可以看做为特殊的digest,它仅仅是一个标识而已。Super:超级用户模式。在超级用户模式下可以对Zookeeper进行任意操作。

权限对象:指的是权限赋予给用户或者一个指定的实体,例如IP地址或机器等。在不同的模式下,授权对象是不同的。这种模式和授权对象一一对应。

权限:权限就是指那些通过权限检测后可以被允许执行的操作,在Zookeeper中,对数据的操作权限分为以下五大类:

CREATE、DELETE、READ、WRITE、ADMIN

自定义用户权限。

public class ZkNodeAcl implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZkNodeAcl.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZkNodeAcl() { }

public ZkNodeAcl(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZkNodeAcl());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

public static void main(String[] args) throws InterruptedException, NoSuchAlgorithmException, KeeperException {

ZkNodeAcl zkNodeOperator = new ZkNodeAcl(zkServerPath);

ArrayList acls = new ArrayList();

Id test1 = new Id("digest", DigestAuthenticationProvider.generateDigest("test1:123456"));

Id test2 = new Id("digest", DigestAuthenticationProvider.generateDigest("test2:123456"));

acls.add(new ACL(ZooDefs.Perms.ALL,test1));

acls.add(new ACL(ZooDefs.Perms.READ,test2));

acls.add(new ACL(ZooDefs.Perms.DELETE | ZooDefs.Perms.CREATE,test2));

zkNodeOperator.createZKNode("/testacl", "heihei".getBytes(), acls);

zkNodeOperator.getZooKeeper().addAuthInfo("digest", "test2:123456".getBytes());

Thread.sleep(10000);

Stat stat = new Stat();

byte[] result = zkNodeOperator.getZooKeeper().getData("/testacl", false, stat);

log.warn("当前值: { }, 版本: { }", new String(result), stat.getVersion());

new CountDownLatch(1).await();

}

private void createZKNode(String path, byte[] data, ArrayList acls) {

String result = "";

try {

String ctx = "{ create:success}";

zooKeeper.create(path, data, acls, CreateMode.PERSISTENT, new CreateCallBack(), ctx);

Thread.sleep(5000);

log.warn("异步创建节点: { } 成功。。。", result);

} catch (Exception e) {

e.printStackTrace();

}

}

@Override

public void process(WatchedEvent event) {

log.warn("客户端连接接收到watch通知: { }", event);

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

}

acl之ip权限。

public class ZkNodeAclIp implements Watcher {

private ZooKeeper zooKeeper = null;

private static final Logger log = LoggerFactory.getLogger(ZkNodeAclIp.class);

private static final String zkServerPath = "127.0.0.1:2181";

private static final Integer timeout = 5000;

public ZkNodeAclIp() { }

public ZkNodeAclIp(String connectString) {

try {

zooKeeper = new ZooKeeper(connectString, timeout, new ZkNodeAclIp());

} catch (Exception e) {

e.printStackTrace();

if (zooKeeper != null) {

try {

zooKeeper.close();

} catch (Exception e1) {

e1.printStackTrace();

}

}

}

}

public static void main(String[] args) throws Exception {

ZkNodeAclIp zkNodeAcl = new ZkNodeAclIp(zkServerPath);

// ip 方式的 acl

ArrayList aclsIP = new ArrayList<>();

Id ipId1 = new Id("ip", "127.0.0.1");

aclsIP.add(new ACL(ZooDefs.Perms.ALL, ipId1));

// 创建节点

zkNodeAcl.createZKNode("/testaclip", "testaclip".getBytes(), aclsIP);

// 验证ip是否有权限

Stat stat = new Stat();

byte[] result = zkNodeAcl.getZooKeeper().getData("/testaclip", false, stat);

log.warn("当前值: { }, 版本: { }", new String(result), stat.getVersion());

}

/

**

* 创建节点

* @param path

* @param data

* @param acls

*/

private void createZKNode(String path, byte[] data, ArrayList acls) {

String result = "";

try {

// 同步创建

result = zooKeeper.create(path, data, acls, CreateMode.PERSISTENT);

log.warn("同步创建临时节点: { } 成功。。。", result);

} catch (Exception e) {

e.printStackTrace();

}

}

@Override

public void process(WatchedEvent event) {

log.warn("接收到watch通知: { }", event);

}

public ZooKeeper getZooKeeper() {

return zooKeeper;

}

public void setZooKeeper(ZooKeeper zooKeeper) {

this.zooKeeper = zooKeeper;

}

}

第3章 Curator应用

Curator是netflix公司开源的一套zookeeper客户端,目前是Apache的顶级项目。与Zookeeper提供的原生客户端相比,Curator的抽象层次更高,简化了Zookeeper客户端的开发量。Curator解决了很多zookeeper客户端非常底层的细节开发工作,包括连接重连、反复注册wathcer和NodeExistsException 异常等。

引包:

org.apache.zookeeper

zookeeper

3.4.13

org.apache.curator

curator-framework

4.0.1

org.apache.zookeeper

zookeeper

org.apache.curator

curator-recipes

4.0.1

org.apache.zookeeper

zookeeper

</dependencies>

1、基础API

public class CuratorBase {

private static final Logger log = LoggerFactory.getLogger(CuratorBase.class);

//zk服务地址

static final String zk_path = "127.0.0.1:2181";

//会话超时,默认60秒

static final int session_timeout=60000;

//连接超时时间

static final int connect_timeout=15000;

/

**

* 创建客户端

* @return

*/

private static CuratorFramework createClient(){

//重连策略:1秒3次

RetryPolicy retryPolicy = new RetryNTimes(1000,3);

CuratorFramework zkClient = CuratorFrameworkFactory.builder()

.connectionTimeoutMs(connect_timeout)

.sessionTimeoutMs(session_timeout)

.connectString(zk_path)

.retryPolicy(retryPolicy)

.build();

//开启链接

zkClient.start();

return zkClient;

}

public static void baseAPI() throws Exception {

CuratorFramework zkCli = createClient();

CuratorFrameworkState state = zkCli.getState();

if(state.equals(CuratorFrameworkState.STARTED)){

/

**

* 创建节点

*

* zk节点类型:

* PERSISTENT : 持久化节点

* PERSISTENT_SEQUENTIAL : 持久化有序节点

* EPHEMERAL : 会话节点(伴随会话结束消失)

* EPHEMERAL_SEQUENTIAL : 会话有序节点

*/

String path = zkCli.create()

.creatingParentsIfNeeded()

.withMode(CreateMode.PERSISTENT)

.forPath("/curator/base/1", "curator测试".getBytes());

log.warn("path : { }",path);

/

**

* 获取节点数据

*/

byte[] bytes = zkCli.getData().forPath(path);

log.warn("节点数据 : { } ",new String(bytes));

/

**

* 更新节点数据

*/

zkCli.setData().forPath(path,"修改后的数据".getBytes());

byte[] bytes1 = zkCli.getData().forPath(path);

log.warn("更新节点数据 : { }",new String(bytes1));

/

**

* 获取子节点

*/

Listchildren_paths = zkCli.getChildren().forPath(path);

children_paths.forEach(x->{

log.warn(path+" 子节点:"+x);

});

/

**

* 检查节点状态

*/

Stat stat = zkCli.checkExists().forPath(path);

log.warn(path+" 节点状态:"+stat.toString());

/

**

* 删除节点

*/

zkCli.delete().guaranteed().deletingChildrenIfNeeded().forPath(path);

CountDownLatch countDownLatch = new CountDownLatch(1);

ExecutorService executorService = Executors.newCachedThreadPool();

String path2 = zkCli.create()

.creatingParentsIfNeeded()

.withMode(CreateMode.PERSISTENT)

.inBackground(new BackgroundCallback() {

@Override

public void processResult(CuratorFramework curatorFramework, CuratorEvent curatorEvent) throws Exception {

log.warn("code:" + curatorEvent.getResultCode());

log.warn("type:" + curatorEvent.getType());

log.warn("线程为:" + Thread.currentThread().getName());

countDownLatch.countDown();

}

}, executorService)

.forPath("/curator/base/2","curator测试2".getBytes());

countDownLatch.await();

if(path2!=null){

byte[] bytes2 = zkCli.getData().forPath(path2);

log.warn("/curator/base/2 : "+ new String(bytes));

}

}

}

public static void main(String[] args) throws Exception {

baseAPI();

}

}public class BaseOperator {

public static CuratorFramework getClient() {

return CuratorFrameworkFactory.builder()

.connectString("127.0.0.1:2181")

.retryPolicy(new ExponentialBackoffRetry(1000, 3))

.connectionTimeoutMs(15 * 1000) //连接超时时间,默认15秒

.sessionTimeoutMs(60 * 1000) //会话超时时间,默认60秒

.namespace("arch") //设置命名空间

.build();

}

public static void create(final CuratorFramework client, final String path, final byte[] payload) throws Exception {

client.create().creatingParentsIfNeeded().forPath(path, payload);

}

public static void createEphemeral(final CuratorFramework client, final String path, final byte[] payload) throws Exception {

client.create().withMode(CreateMode.EPHEMERAL).forPath(path, payload);

}

public static String createEphemeralSequential(final CuratorFramework client, final String path, final byte[] payload) throws Exception {

return client.create().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path, payload);

}

public static void setData(final CuratorFramework client, final String path, final byte[] payload) throws Exception {

client.setData().forPath(path, payload);

}

public static void delete(final CuratorFramework client, final String path) throws Exception {

client.delete().deletingChildrenIfNeeded().forPath(path);

}

public static void guaranteedDelete(final CuratorFramework client, final String path) throws Exception {

client.delete().guaranteed().forPath(path);

}

public static String getData(final CuratorFramework client, final String path) throws Exception {

return new String(client.getData().forPath(path));

}

public static ListgetChildren(final CuratorFramework client, final String path) throws Exception {

return client.getChildren().forPath(path);

}

}

2、事件监听

zookeeper原生支持通过注册watcher来进行事件监听,但是其使用不是特别方便,需要开发人员自己反复注册watcher,比较繁琐。

Curator引入Cache来实现对zookeeper服务端事务的监听。Cache是Curator中对事件监听的包装,其对事件的监听其实可以近似看作是一个本地缓存视图和远程Zookeeper视图的对比过程。同时,Curator能够自动为开发人员处理反复注册监听,从而大大简化原生api开发的繁琐过程。

NodeCache:

public class ZkCuratorNodeCache {

public static void main(String[] args) throws Exception {

nodeCache();

}

public static void nodeCache() throws Exception {

final String path = "/nodeCache";

final CuratorFramework client = BaseOperator.getClient();

client.start();

// BaseOperator.delete(client, path);

BaseOperator.create(client, path, "cache".getBytes());

final NodeCache nodeCache = new NodeCache(client, path);

nodeCache.start(true);

nodeCache.getListenable()

.addListener(() -> System.out.println("节点数据发生变化,新数据为:" + new String(nodeCache.getCurrentData().getData())));

BaseOperator.setData(client, path, "cache1".getBytes());

BaseOperator.setData(client, path, "cache2".getBytes());

Thread.sleep(1000);

client.close();

}

}

NodeCache可以监听指定的节点,注册监听器后,节点的变化会通知相应的监听器。

Path Cache:

Path Cache 用来监听ZNode的子节点事件,包括added、updateed、removed,Path Cache会同步子节点的状态,产生的事件会传递给注册的PathChildrenCacheListener。

public class ZkCuratorPathCache {

public static void main(String[] args) throws Exception {

pathChildrenCache();

}

public static void pathChildrenCache() throws Exception {

final String path = "/pathChildrenCache";

final CuratorFramework client = BaseOperator.getClient();

client.start();

final PathChildrenCache cache = new PathChildrenCache(client, path, true);

cache.start(PathChildrenCache.StartMode.POST_INITIALIZED_EVENT);

cache.getListenable().addListener((client1, event) -> {

switch (event.getType()) {

case CHILD_ADDED:

System.out.println("CHILD_ADDED:" + event.getData().getPath());

break;

case CHILD_REMOVED:

System.out.println("CHILD_REMOVED:" + event.getData().getPath());

break;

case CHILD_UPDATED:

System.out.println("CHILD_UPDATED:" + event.getData().getPath());

break;

case CONNECTION_LOST:

System.out.println("CONNECTION_LOST:" + event.getData().getPath());

break;

case CONNECTION_RECONNECTED:

System.out.println("CONNECTION_RECONNECTED:" + event.getData().getPath());

break;

case CONNECTION_SUSPENDED:

System.out.println("CONNECTION_SUSPENDED:" + event.getData().getPath());

break;

case INITIALIZED:

System.out.println("INITIALIZED:" + event.getData().getPath());

break;

default:

break;

}

});

// client.create().withMode(CreateMode.PERSISTENT).forPath(path);

Thread.sleep(1000);

client.create().withMode(CreateMode.PERSISTENT).forPath(path + "/c1");

Thread.sleep(1000);

client.delete().forPath(path + "/c1");

Thread.sleep(1000);

client.delete().forPath(path); //监听节点本身的变化不会通知

Thread.sleep(1000);

client.close();

}

}

TreeCache:

Path Cache和Node Cache的“合体”,监视路径下的创建、更新、删除事件,并缓存路径下所有孩子结点的数据。

public class ZkCuratorTreeCache {

public static void main(String[] args) throws Exception {

treeCache();

}

public static void treeCache() throws Exception {

final String path = "/treeChildrenCache";

final CuratorFramework client = BaseOperator.getClient();

client.start();

final TreeCache cache = new TreeCache(client, path);

cache.start();

cache.getListenable().addListener((client1, event) -> {

switch (event.getType()){

case NODE_ADDED:

System.out.println("NODE_ADDED:" + event.getData().getPath());

break;

case NODE_REMOVED:

System.out.println("NODE_REMOVED:" + event.getData().getPath());

break;

case NODE_UPDATED:

System.out.println("NODE_UPDATED:" + event.getData().getPath());

break;

case CONNECTION_LOST:

System.out.println("CONNECTION_LOST:" + event.getData().getPath());

break;

case CONNECTION_RECONNECTED:

System.out.println("CONNECTION_RECONNECTED:" + event.getData().getPath());

break;

case CONNECTION_SUSPENDED:

System.out.println("CONNECTION_SUSPENDED:" + event.getData().getPath());

break;

case INITIALIZED:

System.out.println("INITIALIZED:" + event.getData().getPath());

break;

default:

break;

}

});

client.create().withMode(CreateMode.PERSISTENT).forPath(path);

Thread.sleep(1000);

client.create().withMode(CreateMode.PERSISTENT).forPath(path + "/c1");

Thread.sleep(1000);

BaseOperator.setData(client, path, "test".getBytes());

Thread.sleep(1000);

client.delete().forPath(path + "/c1");

Thread.sleep(1000);

client.delete().forPath(path);

Thread.sleep(1000);

client.close();

}

}

3、分布式锁应用

可重入锁Shared Reentrant Lock。

Shared意味着锁是全局可见的, 客户端都可以请求锁。Reentrant和JDK的ReentrantLock类似, 意味着同一个客户端在拥有锁的同时,可以多次获取,不会被阻塞。它是由类InterProcessMutex来实现。它的构造函数为:

public InterProcessMutex(CuratorFramework client, String path)

不可重入锁Shared Lock。

使用InterProcessSemaphoreMutex,调用方法类似,区别在于该锁是不可重入的,在同一个线程中不可重入。

可重入读写锁Shared Reentrant Read Write Lock 类似JDK的ReentrantReadWriteLock. 一个读写锁管理一对相关的锁。一个负责读操作,另外一个负责写操作。读操作在写锁没被使用时可同时由多个进程使用,而写锁使用时不允许读 (阻塞)。此锁是可重入的。一个拥有写锁的线程可重入读锁,但是读锁却不能进入写锁。这也意味着写锁可以降级成读锁, 比如请求写锁 —>读锁 —->释放写锁。从读锁升级成写锁是不成的。主要由两个类实现:

InterProcessReadWriteLock

InterProcessLock

信号量Shared Semaphore 一个计数的信号量类似JDK的Semaphore。JDK中Semaphore维护的一组许可(permits),而Cubator中称之为租约(Lease)。注意,所有的实例必须使用相同的numberOfLeases值。调用acquire会返回一个租约对象。客户端必须在finally中close这些租约对象,否则这些租约会丢失掉。但是, 但是,如果客户端session由于某种原因比如crash丢掉, 那么这些客户端持有的租约会自动close, 这样其它客户端可以继续使用这些租约。租约还可以通过下面的方式返还:

public void returnAll(Collectionleases)

public void returnLease(Lease lease)

多锁对象Multi Shared Lock Multi Shared Lock是一个锁的容器。当调用acquire, 所有的锁都会被acquire,如果请求失败,所有的锁都会被release。同样调用release时所有的锁都被release(失败被忽略)。基本上,它就是组锁的代表,在它上面的请求释放操作都会传递给它包含的所有的锁。主要涉及两个类:

InterProcessMultiLock

InterProcessLock

它的构造函数需要包含的锁的集合,或者一组ZooKeeper的path。

public InterProcessMultiLock(Listlocks)

public InterProcessMultiLock(CuratorFramework client, List<String> paths)

代码演示:

public class ZkCuratorLock {

private static final String zk_server = "127.0.0.1:2181";

private static final String zk_path = "/curator/zklock";

public static void doWithLock(CuratorFramework curatorFramework){

ListzkPaths = new ArrayList();

zkPaths.add(zk_path);

InterProcessMultiLock lock = new InterProcessMultiLock(curatorFramework,zkPaths);

// InterProcessMutex lock2 = new InterProcessMutex(curatorFramework,zk_path);

try {

if(lock.acquire(30, TimeUnit.SECONDS)){

long threadId = Thread.currentThread().getId();

System.out.println("线程-"+threadId+",acquire lock");

Thread.sleep(1000);

System.out.println("线程-"+threadId+",replease lock");

}

}catch (Exception e){

e.fillInStackTrace();

}finally {

try {

lock.release();

} catch (Exception e) {

e.fillInStackTrace();

}

}

}

public static void main(String[] args) {

ExecutorService es = Executors.newFixedThreadPool(10);

for(int i=10;i>0;i--){

es.execute(new Runnable() {

@Override

public void run() {

RetryNTimes retryNTimes = new RetryNTimes(1000, 3);

CuratorFramework curatorFramework = CuratorFrameworkFactory.newClient(zk_server, retryNTimes);

curatorFramework.start();

ZkCuratorLock.doWithLock(curatorFramework);

}

});

}

es.shutdown();

}

}

4、栅栏barrier

DistributedBarrier构造函数中barrierPath参数用来确定一个栅栏,只要barrierPath参数相同(路径相同)就是同一个栅栏。通常情况下栅栏的使用如下:

主导client设置一个栅栏。其他客户端就会调用waitOnBarrier()等待栅栏移除,程序处理线程阻塞。主导client移除栅栏,其他客户端的处理程序就会同时继续运行。 DistributedBarrier类的主要方法如下: setBarrier() - 设置栅栏 waitOnBarrier() - 等待栅栏移除 removeBarrier() - 移除栅栏。

双栅栏Double Barrier 双栅栏允许客户端在计算的开始和结束时同步。当足够的进程加入到双栅栏时,进程开始计算,当计算完成时,离开栅栏。双栅栏类是DistributedDoubleBarrier DistributedDoubleBarrier类实现了双栅栏的功能。它的构造函数如下:

// client - the client

// barrierPath - path to use

// memberQty - the number of members in the barrier

public DistributedDoubleBarrier(CuratorFramework client, String barrierPath, int memberQty)

memberQty是成员数量,当enter方法被调用时,成员被阻塞,直到所有的成员都调用了enter。当leave方法被调用时,它也阻塞调用线程,直到所有的成员都调用了leave。 注意:参数memberQty的值只是一个阈值,而不是一个限制值。当等待栅栏的数量大于或等于这个值栅栏就会打开! 与栅栏(DistributedBarrier)一样,双栅栏的barrierPath参数也是用来确定是否是同一个栅栏的,双栅栏的使用情况如下:

从多个客户端在同一个路径上创建双栅栏(DistributedDoubleBarrier),然后调用enter()方法,等待栅栏数量达到memberQty时就可以进入栅栏。栅栏数量达到memberQty,多个客户端同时停止阻塞继续运行,直到执行leave()方法,等待memberQty个数量的栅栏同时阻塞到leave()方法中。memberQty个数量的栅栏同时阻塞到leave()方法中,多个客户端的leave()方法停止阻塞,继续运行。 DistributedDoubleBarrier类的主要方法如下:enter()、enter(long maxWait, TimeUnit unit) - 等待同时进入栅栏 leave()、leave(long maxWait, TimeUnit unit) - 等待同时离开栅栏 异常处理:DistributedDoubleBarrier会监控连接状态,当连接断掉时enter()和leave方法会抛出异常。

5、计数器Counters

利用ZooKeeper可以实现一个集群共享的计数器。只要使用相同的path就可以得到最新的计数器值, 这是由ZooKeeper的一致性保证的。Curator有两个计数器, 一个是用int来计数,一个用long来计数。

1)SharedCount 这个类使用int类型来计数。主要涉及三个类。

SharedCount。SharedCountReader。SharedCountListener SharedCount代表计数器, 可以为它增加一个SharedCountListener,当计数器改变时此Listener可以监听到改变的事件,而SharedCountReader可以读取到最新的值, 包括字面值和带版本信息的值VersionedValue。

2)DistributedAtomicLong 除了计数的范围比SharedCount大了之外, 它首先尝试使用乐观锁的方式设置计数器, 如果不成功(比如期间计数器已经被其它client更新了), 它使用InterProcessMutex方式来更新计数值。此计数器有一系列的操作:

get(): 获取当前值。increment():加一。decrement(): 减一。add():增加特定的值。subtract(): 减去特定的值。trySet(): 尝试设置计数值。forceSet(): 强制设置计数值。

你必须检查返回结果的succeeded(), 它代表此操作是否成功。如果操作成功, preValue()代表操作前的值, postValue()代表操作后的值。

6、 选举

curator提供了两种方式,分别是Leader Latch和Leader Election。

Leader Latch。

随机从候选者中选出一台作为leader,选中之后除非调用close()释放leadship,否则其他的后选择无法成为leader。

public class LeaderLatchTest {

private static final String PATH = "/demo/leader";

public static void main(String[] args) {

ListlatchList = new ArrayList<>();

Listclients = new ArrayList<>();

try {

for (int i = 0; i < 10; i++) {

CuratorFramework client = getClient();

client.start();

clients.add(client);

final LeaderLatch leaderLatch = new LeaderLatch(client, PATH, "client#" + i);

leaderLatch.addListener(new LeaderLatchListener() {

@Override

public void isLeader() {

System.out.println(leaderLatch.getId() + ":I am leader. I am doing jobs!");

}

@Override

public void notLeader() {

System.out.println(leaderLatch.getId() + ":I am not leader. I will do nothing!");

}

});

latchList.add(leaderLatch);

leaderLatch.start();

}

Thread.sleep(1000 * 60);

} catch (Exception e) {

e.printStackTrace();

} finally {

for (CuratorFramework client : clients) {

CloseableUtils.closeQuietly(client);

}

for (LeaderLatch leaderLatch : latchList) {

CloseableUtils.closeQuietly(leaderLatch);

}

}

}

public static CuratorFramework getClient() {

return CuratorFrameworkFactory.builder()

.connectString("127.0.0.1:2181")

.retryPolicy(new ExponentialBackoffRetry(1000, 3))

.connectionTimeoutMs(15 * 1000) //连接超时时间,默认15秒

.sessionTimeoutMs(60 * 1000) //会话超时时间,默认60秒

.namespace("arch") //设置命名空间

.build();

}

}Leader Election。

通过LeaderSelectorListener可以对领导权进行控制, 在适当的时候释放领导权,这样每个节点都有可能获得领导权。而LeaderLatch则一直持有leadership, 除非调用close方法,否则它不会释放领导权。

public class LeaderSelectorTest {

private static final String PATH = "/demo/leader";

public static void main(String[] args) {

Listselectors = new ArrayList<>();

Listclients = new ArrayList<>();

try {

for (int i = 0; i < 10; i++) {

CuratorFramework client = getClient();

client.start();

clients.add(client);

final String name = "client#" + i;

LeaderSelector leaderSelector = new LeaderSelector(client, PATH, new LeaderSelectorListenerAdapter() {

@Override

public void takeLeadership(CuratorFramework client) throws Exception {

System.out.println(name + ":I am leader.");

Thread.sleep(2000);

}

});

leaderSelector.autoRequeue();

leaderSelector.start();

selectors.add(leaderSelector);

}

Thread.sleep(Integer.MAX_VALUE);

} catch (Exception e) {

e.printStackTrace();

} finally {

for (CuratorFramework client : clients) {

CloseableUtils.closeQuietly(client);

}

for (LeaderSelector selector : selectors) {

CloseableUtils.closeQuietly(selector);

}

}

}

public static CuratorFramework getClient() {

return CuratorFrameworkFactory.builder()

.connectString("127.0.0.1:2181")

.retryPolicy(new ExponentialBackoffRetry(1000, 3))

.connectionTimeoutMs(15 * 1000) //连接超时时间,默认15秒

.sessionTimeoutMs(60 * 1000) //会话超时时间,默认60秒

.namespace("arch") //设置命名空间

.build();

}

}

至此Zookeeper的应用大体讲完了,在这里多说一句,技术的API不用去背,背也是背不住的,多使用就好了。

分享到:

滇ICP备2023006006号-16