当前位置:首页 > 人工智能

聊聊 Airflow 2.2.3 容器化安装

上文简单的聊聊了解了airflow的概念与使用场景,今天就通过Docker安装一下Airflow,器化在使用中在深入的了解一下airflow有哪些具体的功能。

1Airflow容器化部署

阿里云的安装宿主机环境:

操作系统: Ubuntu 20.04.3 LTS 内核版本: Linux 5.4.0-91-generic

安装docker

安装Docker可参考官方文档[1],纯净系统,就没必要卸载旧版本了,聊聊因为是器化云上平台,为防止配置搞坏环境,安装你可以先提前进行快照。聊聊

 # 更新repo  sudo apt-get update  sudo apt-get install \     ca-certificates \     curl \     gnupg \     lsb-release # 添加docker gpg key curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg # 设置docker stable仓库地址 echo \   "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \   $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null # 查看可安装的器化docker-ce版本 root@bigdata1:~# apt-cache madison docker-ce  docker-ce | 5:20.10.12~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages  docker-ce | 5:20.10.11~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages  docker-ce | 5:20.10.10~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages  docker-ce | 5:20.10.9~3-0~ubuntu-focal | https://download.docker.com/linux/ubuntu focal/stable amd64 Packages # 安装命令格式 #sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-cli=<VERSION_STRING> containerd.io # 安装指定版本 sudo apt-get install docker-ce=5:20.10.12~3-0~ubuntu-focal docker-ce-cli=5:20.10.12~3-0~ubuntu-focal containerd.io 

优化Docker配置

{      "data-root": "/var/lib/docker",     "exec-opts": [         "native.cgroupdriver=systemd"     ],     "registry-mirrors": [         "https://****.mirror.aliyuncs.com" #此处配置一些加速的地址,比如阿里云的云服务器提供商安装等等...     ],     "storage-driver": "overlay2",     "storage-opts": [         "overlay2.override_kernel_check=true"     ],     "log-driver": "json-file",     "log-opts": {          "max-size": "100m",         "max-file": "3"     } } 

配置开机自己

systemctl daemon-reload systemctl enable --now docker.service 

容器化安装Airflow

数据库选型

根据官网的说明,数据库建议使用MySQL8+和postgresql 9.6+,聊聊在官方的器化docker-compose脚本[2]中使用是PostgreSQL,因此我们需要调整一下docker-compose.yml的内容

--- version: 3 x-airflow-common:   &airflow-common   # In order to add custom dependencies or upgrade provider packages you can use your extended image.   # Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml   # and uncomment the "build" line below, Then run `docker-compose build` to build the images.   image: ${ AIRFLOW_IMAGE_NAME:-apache/airflow:2.2.3}   # build: .   environment:     &airflow-common-env     AIRFLOW__CORE__EXECUTOR: CeleryExecutor     AIRFLOW__CORE__SQL_ALCHEMY_CONN: mysql+mysqldb://airflow:aaaa@mysql/airflow # 此处替换为mysql连接方式     AIRFLOW__CELERY__RESULT_BACKEND: db+mysql://airflow:aaaa@mysql/airflow # 此处替换为mysql连接方式     AIRFLOW__CELERY__BROKER_URL: redis://:xxxx@redis:6379/0 # 为保证安全,我们对redis开启了认证,安装因此将此处xxxx替换为redis密码     AIRFLOW__CORE__FERNET_KEY:      AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: true     AIRFLOW__CORE__LOAD_EXAMPLES: true     AIRFLOW__API__AUTH_BACKEND: airflow.api.auth.backend.basic_auth     _PIP_ADDITIONAL_REQUIREMENTS: ${ _PIP_ADDITIONAL_REQUIREMENTS:-}   volumes:     - ./dags:/opt/airflow/dags     - ./logs:/opt/airflow/logs     - ./plugins:/opt/airflow/plugins   user: "${ AIRFLOW_UID:-50000}:0"   depends_on:     &airflow-common-depends-on     redis:       condition: service_healthy     mysql: # 此处修改为mysql service名称       condition: service_healthy services:   mysql:     image: mysql:8.0.27 # 修改为mysql最新版镜像     environment:       MYSQL_ROOT_PASSWORD: bbbb # MySQL root账号密码       MYSQL_USER: airflow       MYSQL_PASSWORD: aaaa # airflow用户的聊聊密码       MYSQL_DATABASE: airflow     command:       --default-authentication-plugin=mysql_native_password # 指定默认的认证插件       --collation-server=utf8mb4_general_ci # 依据官方指定字符集       --character-set-server=utf8mb4 # 依据官方指定字符编码     volumes:       - /apps/airflow/mysqldata8:/var/lib/mysql # 持久化MySQL数据       - /apps/airflow/my.cnf:/etc/my.cnf # 持久化MySQL配置文件     healthcheck:       test:  mysql --user=$$MYSQL_USER --password=$$MYSQL_PASSWORD -e SHOW DATABASES; # healthcheck command       interval: 5s       retries: 5     restart: always   redis:     image: redis:6.2     expose:       - 6379     command: redis-server --requirepass xxxx # redis-server开启密码认证     healthcheck:       test: ["CMD", "redis-cli","-a","xxxx","ping"] # redis使用密码进行healthcheck       interval: 5s       timeout: 30s       retries: 50     restart: always   airflow-webserver:     <<: *airflow-common     command: webserver     ports:       - 8080:8080     healthcheck:       test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]       interval: 10s       timeout: 10s       retries: 5     restart: always     depends_on:       <<: *airflow-common-depends-on       airflow-init:         condition: service_completed_successfully   airflow-scheduler:     <<: *airflow-common     command: scheduler     healthcheck:       test: ["CMD-SHELL", airflow jobs check --job-type SchedulerJob --hostname "$${ HOSTNAME}"]       interval: 10s       timeout: 10s       retries: 5     restart: always     depends_on:       <<: *airflow-common-depends-on       airflow-init:         condition: service_completed_successfully   airflow-worker:     <<: *airflow-common     command: celery worker     healthcheck:       test:         - "CMD-SHELL"         - celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${ HOSTNAME}"       interval: 10s       timeout: 10s       retries: 5     environment:       <<: *airflow-common-env       # Required to handle warm shutdown of the celery workers properly       # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation       DUMB_INIT_SETSID: "0"     restart: always     depends_on:       <<: *airflow-common-depends-on       airflow-init:         condition: service_completed_successfully   airflow-triggerer:     <<: *airflow-common     command: triggerer     healthcheck:       test: ["CMD-SHELL", airflow jobs check --job-type TriggererJob --hostname "$${ HOSTNAME}"]       interval: 10s       timeout: 10s       retries: 5     restart: always     depends_on:       <<: *airflow-common-depends-on       airflow-init:         condition: service_completed_successfully   airflow-init:     <<: *airflow-common     entrypoint: /bin/bash     # yamllint disable rule:line-length     command:       - -c       - |         function ver() {            printf "%04d%04d%04d%04d" $${ 1//./ }         }         airflow_version=$$(gosu airflow airflow version)         airflow_version_comparable=$$(ver $${ airflow_version})         min_airflow_version=2.2.0         min_airflow_version_comparable=$$(ver $${ min_airflow_version})         if (( airflow_version_comparable < min_airflow_version_comparable )); then           echo           echo -e "\033[1;31mERROR!!!: Too old Airflow version $${ airflow_version}!\e[0m"           echo "The minimum Airflow version supported: $${ min_airflow_version}. Only use this or higher!"           echo           exit 1         fi         if [[ -z "${ AIRFLOW_UID}" ]]; then           echo           echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"           echo "If you are on Linux, you SHOULD follow the instructions below to set "           echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."           echo "For other operating systems you can get rid of the warning with manually created .env file:"           echo "    See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"           echo         fi         one_meg=1048576         mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))         cpus_available=$$(grep -cE cpu[0-9]+ /proc/stat)         disk_available=$$(df / | tail -1 | awk { print $$4})         warning_resources="false"         if (( mem_available < 4000 )) ; then           echo           echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"           echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"           echo           warning_resources="true"         fi         if (( cpus_available < 2 )); then           echo           echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"           echo "At least 2 CPUs recommended. You have $${ cpus_available}"           echo           warning_resources="true"         fi         if (( disk_available < one_meg * 10 )); then           echo           echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"           echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"           echo           warning_resources="true"         fi         if [[ $${ warning_resources} == "true" ]]; then           echo           echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"           echo "Please follow the instructions to increase amount of resources available:"           echo "   https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"           echo         fi         mkdir -p /sources/logs /sources/dags /sources/plugins         chown -R "${ AIRFLOW_UID}:0" /sources/{ logs,dags,plugins}         exec /entrypoint airflow version     # yamllint enable rule:line-length     environment:       <<: *airflow-common-env       _AIRFLOW_DB_UPGRADE: true       _AIRFLOW_WWW_USER_CREATE: true       _AIRFLOW_WWW_USER_USERNAME: ${ _AIRFLOW_WWW_USER_USERNAME:-airflow}       _AIRFLOW_WWW_USER_PASSWORD: ${ _AIRFLOW_WWW_USER_PASSWORD:-airflow}     user: "0:0"     volumes:       - .:/sources   airflow-cli:     <<: *airflow-common     profiles:       - debug     environment:       <<: *airflow-common-env       CONNECTION_CHECK_MAX_COUNT: "0"     # Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252     command:       - bash       - -c       - airflow   flower:     <<: *airflow-common     command: celery flower     ports:       - 5555:5555     healthcheck:       test: ["CMD", "curl", "--fail", "http://localhost:5555/"]       interval: 10s       timeout: 10s       retries: 5     restart: always     depends_on:       <<: *airflow-common-depends-on       airflow-init:         condition: service_completed_successfully 

在官方docker-compose.yaml基础上只修改了x-airflow-common,MySQL,Redis相关配置,接下来就应该启动容器了,器化在启动之前,安装需要创建几个持久化目录:

mkdir -p ./dags ./logs ./plugins echo -e "AIRFLOW_UID=$(id -u)" > .env # 注意,此处一定要保证AIRFLOW_UID是普通用户的站群服务器UID,且保证此用户有创建这些持久化目录的权限 

如果不是普通用户,在运行容器的时候,会报错,找不到airflow模块

docker-compose up airflow-init #初始化数据库,以及创建表 docker-compose up -d #创建airflow容器 

当出现容器的状态为unhealthy的时候,要通过docker inspect $container_name查看报错的原因,至此airflow的安装就已经完成了。

参考资料

[1]Install Docker Engine on Ubuntu: https://docs.docker.com/engine/install/ubuntu/

[2]官方docker-compose.yaml: https://airflow.apache.org/docs/apache-airflow/2.2.3/docker-compose.yaml

分享到:

滇ICP备2023006006号-16